DOC HOME SITE MAP MAN PAGES GNU INFO SEARCH PRINT BOOK
 

bn_fix_top(3)




bn_internal(3)               OpenSSL               bn_internal(3)


NAME

     bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words,
     bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8,
     bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
     bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive,
     bn_mul_low_recursive, bn_mul_high, bn_sqr_normal,
     bn_sqr_recursive, bn_expand, bn_wexpand, bn_expand2,
     bn_fix_top, bn_check_top, bn_print, bn_dump, bn_set_max,
     bn_set_high, bn_set_low - BIGNUM library internal functions


SYNOPSIS

      #include <openssl/bn.h>

      BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
      BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,
        BN_ULONG w);
      void     bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
      BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
      BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
        int num);
      BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
        int num);

      void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
      void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
      void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
      void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);

      int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);

      void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
        int nb);
      void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
      void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
        int dna,int dnb,BN_ULONG *tmp);
      void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
        int n, int tna,int tnb, BN_ULONG *tmp);
      void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
        int n2, BN_ULONG *tmp);
      void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,
        int n2, BN_ULONG *tmp);

      void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
      void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);

      void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
      void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
      void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);

1.0.2t               Last change: 2019-09-10                    1

bn_internal(3)               OpenSSL               bn_internal(3)

      BIGNUM *bn_expand(BIGNUM *a, int bits);
      BIGNUM *bn_wexpand(BIGNUM *a, int n);
      BIGNUM *bn_expand2(BIGNUM *a, int n);
      void bn_fix_top(BIGNUM *a);

      void bn_check_top(BIGNUM *a);
      void bn_print(BIGNUM *a);
      void bn_dump(BN_ULONG *d, int n);
      void bn_set_max(BIGNUM *a);
      void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
      void bn_set_low(BIGNUM *r, BIGNUM *a, int n);


DESCRIPTION

     This page documents the internal functions used by the
     OpenSSL BIGNUM implementation. They are described here to
     facilitate debugging and extending the library. They are not
     to be used by applications.

     The BIGNUM structure

      typedef struct bignum_st BIGNUM;

      struct bignum_st
             {
             BN_ULONG *d;    /* Pointer to an array of 'BN_BITS2' bit chunks. */
             int top;        /* Index of last used d +1. */
             /* The next are internal book keeping for bn_expand. */
             int dmax;       /* Size of the d array. */
             int neg;        /* one if the number is negative */
             int flags;
             };

     The integer value is stored in d, a malloc()ed array of
     words (BN_ULONG), least significant word first. A BN_ULONG
     can be either 16, 32 or 64 bits in size, depending on the
     'number of bits' (BITS2) specified in "openssl/bn.h".

     dmax is the size of the d array that has been allocated.
     top is the number of words being used, so for a value of 4,
     bn.d[0]=4 and bn.top=1.  neg is 1 if the number is negative.
     When a BIGNUM is 0, the d field can be NULL and top == 0.

     flags is a bit field of flags which are defined in
     "openssl/bn.h". The flags begin with BN_FLG_. The macros
     BN_set_flags(b,n) and BN_get_flags(b,n) exist to enable or
     fetch flag(s) n from BIGNUM structure b.

     Various routines in this library require the use of
     temporary BIGNUM variables during their execution.  Since
     dynamic memory allocation to create BIGNUMs is rather
     expensive when used in conjunction with repeated subroutine
     calls, the BN_CTX structure is used.  This structure

1.0.2t               Last change: 2019-09-10                    2

bn_internal(3)               OpenSSL               bn_internal(3)

     contains BN_CTX_NUM BIGNUMs, see BN_CTX_start(3).

     Low-level arithmetic operations

     These functions are implemented in C and for several
     platforms in assembly language:

     bn_mul_words(rp, ap, num, w) operates on the num word arrays
     rp and ap.  It computes ap * w, places the result in rp, and
     returns the high word (carry).

     bn_mul_add_words(rp, ap, num, w) operates on the num word
     arrays rp and ap.  It computes ap * w + rp, places the
     result in rp, and returns the high word (carry).

     bn_sqr_words(rp, ap, n) operates on the num word array ap
     and the 2*num word array ap.  It computes ap * ap word-wise,
     and places the low and high bytes of the result in rp.

     bn_div_words(h, l, d) divides the two word number (h,l) by d
     and returns the result.

     bn_add_words(rp, ap, bp, num) operates on the num word
     arrays ap, bp and rp.  It computes ap + bp, places the
     result in rp, and returns the high word (carry).

     bn_sub_words(rp, ap, bp, num) operates on the num word
     arrays ap, bp and rp.  It computes ap - bp, places the
     result in rp, and returns the carry (1 if bp > ap, 0
     otherwise).

     bn_mul_comba4(r, a, b) operates on the 4 word arrays a and b
     and the 8 word array r.  It computes a*b and places the
     result in r.

     bn_mul_comba8(r, a, b) operates on the 8 word arrays a and b
     and the 16 word array r.  It computes a*b and places the
     result in r.

     bn_sqr_comba4(r, a, b) operates on the 4 word arrays a and b
     and the 8 word array r.

     bn_sqr_comba8(r, a, b) operates on the 8 word arrays a and b
     and the 16 word array r.

     The following functions are implemented in C:

     bn_cmp_words(a, b, n) operates on the n word arrays a and b.
     It returns 1, 0 and -1 if a is greater than, equal and less
     than b.

1.0.2t               Last change: 2019-09-10                    3

bn_internal(3)               OpenSSL               bn_internal(3)

     bn_mul_normal(r, a, na, b, nb) operates on the na word array
     a, the nb word array b and the na+nb word array r.  It
     computes a*b and places the result in r.

     bn_mul_low_normal(r, a, b, n) operates on the n word arrays
     r, a and b.  It computes the n low words of a*b and places
     the result in r.

     bn_mul_recursive(r, a, b, n2, dna, dnb, t) operates on the
     word arrays a and b of length n2+dna and n2+dnb (dna and dnb
     are currently allowed to be 0 or negative) and the 2*n2 word
     arrays r and t.  n2 must be a power of 2.  It computes a*b
     and places the result in r.

     bn_mul_part_recursive(r, a, b, n, tna, tnb, tmp) operates on
     the word arrays a and b of length n+tna and n+tnb and the
     4*n word arrays r and tmp.

     bn_mul_low_recursive(r, a, b, n2, tmp) operates on the n2
     word arrays r and tmp and the n2/2 word arrays a and b.

     bn_mul_high(r, a, b, l, n2, tmp) operates on the n2 word
     arrays r, a, b and l (?) and the 3*n2 word array tmp.

     BN_mul() calls bn_mul_normal(), or an optimized
     implementation if the factors have the same size:
     bn_mul_comba8() is used if they are 8 words long,
     bn_mul_recursive() if they are larger than
     BN_MULL_SIZE_NORMAL and the size is an exact multiple of the
     word size, and bn_mul_part_recursive() for others that are
     larger than BN_MULL_SIZE_NORMAL.

     bn_sqr_normal(r, a, n, tmp) operates on the n word array a
     and the 2*n word arrays tmp and r.

     The implementations use the following macros which,
     depending on the architecture, may use "long long" C
     operations or inline assembler.  They are defined in
     "bn_lcl.h".

     mul(r, a, w, c) computes w*a+c and places the low word of
     the result in r and the high word in c.

     mul_add(r, a, w, c) computes w*a+r+c and places the low word
     of the result in r and the high word in c.

     sqr(r0, r1, a) computes a*a and places the low word of the
     result in r0 and the high word in r1.

1.0.2t               Last change: 2019-09-10                    4

bn_internal(3)               OpenSSL               bn_internal(3)

     Size changes

     bn_expand() ensures that b has enough space for a bits bit
     number.  bn_wexpand() ensures that b has enough space for an
     n word number.  If the number has to be expanded, both
     macros call bn_expand2(), which allocates a new d array and
     copies the data.  They return NULL on error, b otherwise.

     The bn_fix_top() macro reduces a->top to point to the most
     significant non-zero word plus one when a has shrunk.

     Debugging

     bn_check_top() verifies that "((a)->top >= 0 && (a)->top <=
     (a)->dmax)".  A violation will cause the program to abort.

     bn_print() prints a to stderr. bn_dump() prints n words at d
     (in reverse order, i.e. most significant word first) to
     stderr.

     bn_set_max() makes a a static number with a dmax of its
     current size.  This is used by bn_set_low() and
     bn_set_high() to make r a read-only BIGNUM that contains the
     n low or high words of a.

     If BN_DEBUG is not defined, bn_check_top(), bn_print(),
     bn_dump() and bn_set_max() are defined as empty macros.


SEE ALSO

     bn(3)

1.0.2t               Last change: 2019-09-10                    5


Man(1) output converted with man2html